当前位置: > 学术报告 > 理科 > 正文

理科

数学与信息科学学院系列学术报告

发布时间:2020-11-27 浏览:

 报告人: 王显金教授,侯国林教授

讲座日期:2020-12-02

讲座时间:14:40

报告地点:腾讯会议(ID673 847 466

主办单位:数学与信息科学学院

 

报告题目1 On fibred coarse embedding of box type spaces

报告人: 王显金教授

讲座时间:14:40

讲座人简介:

王显金,重庆大学博士生导师,2008年毕业于复旦大学,获得博士学位。主要研究泛函分析、非交换几何方面问题,目前主持国家自然科学基金面上项目一项。在Adv. Math.J. Funct. Anal.Israel J. Math.Bull. Lond. Math. Soc.等杂志发表多篇文章。

讲座简介:

In this talk, we introduce a new concept almost fibred coarse embeddability for metric spaces which is a generalization of fibred coarse embeddability given by X. Chen, Q. Wang and G. Yu. Then we show that the sofic approximation of a finitely generated discrete group is almost fibred coarse embeddable into some uniformly convex Banach space if and only if the group admits a proper affine isometric action on some uniformly convex Banach space.

 

报告题目2Some theoretical and applied research on the completeness of generalized eigenvectors of unbounded Hamiltonian operators.

报告人: 侯国林教授

讲座时间:16:00

讲座人简介:

侯国林,内蒙古大学 教授,博导。主要侧重于探讨源于实际问题的线性算子及分块算子矩阵的谱理论,特别是非自伴算子,如: 无界Hamilton算子,并注重相关理论研究在工程力学等实际问题中的应用。主持在研1项国家自然科学基金项目,主持完成1项国家自然科学基金项目,连续主持3项内蒙古自然科学基金项目,并入选2015年度内蒙古自治区高等学校青年科技英才计划。2017年获内蒙古自治区青年科技奖,同年获内蒙古自治区优秀科技工作者称号。以第一作者或通讯作者在Journal of Computational and Applied MathematicsApplied Mathematical ModellingLinear Algebra and its ApplicationsApplied Mathematics and ComputationThe European Physical Journal PlusActa Mathematica Sinica (English Series)Science China Physics-Mechanics & AstronomyApplied Mathematics and Mechanics (English Edition)Chinese Physics BCommunications in Theoretical Physics,《中国科学:数学》,《数学学报》,《系统科学与数学》,《力学学报》,《固体力学学报》等数学、物理和力学方面的期刊上发表学术论文。

讲座简介:

The unbounded Hamiltonian operators are a kind of non-selfadjoint operator matrices, which have important applications in the field of continuum mechanics, infinite dimensional linear systems, and optimal control and so on. In order to solve applied mechanics problems rationally, Prof. Wanxie Zhong proposed a new systematical methodology of theory of elasticity (also called the symplectic elasticity approach). The symplectic approach provides a new idea for the development of applied mathematics in China. Its essence is the method of separation of variables based on Hamiltonian systems, and the corresponding mathematical basis is the completeness of the generalized eigenvector system of unbounded Hamiltonian operators. In this talk, we briefly introduces the results on the completeness of the generalized eigenvectors of unbounded Hamiltonian operators from both the theoretical aspect and mechanical application.